

Crossenv: A Virtual Environments for Cross-Compiling Python Extension Modules

Note

This documentation is in the early stages.

Porting a Python app to an embedded device can be complicated. Once you have
Python built for your system, you may find yourself needing to include many
third-party libraries. Pure-Python libraries usually just work, but many
popular libraries rely on compiled C code, which can be challenging to build.

This package is a tool for cross-compiling extension modules. It creates a
special virtual environment such that pip or setup.py will cross
compile packages for you, often with no further work on your part.

It can be used to:

	Build binary wheels, for installation on target.

	Install packages to a directory for upload or inclusion in a firmware image.

Note

While this tool can cross-compile most Python packages, it can’t solve
all the problems of cross-compiling, and it can’t make cross-compiling a
completely pain-free process. In some cases manual intervention may still
be necessary.

This tool requires Python 3.5 or higher (host and build). Significant work has
gone into cross-compiling Python in newer versions, and many of the techniques
needed to do the cross compilation properly are not available on older
releases.

This tool currently only supports Linux build machines.

Contents:

	Introduction
	Requirements

	Vocabulary

	How it works

	Installation

	“Quick” Start
	Build build-python

	Build or obtain host-python

	Make the cross environment

	Use the resulting packages

	Cross-Compiling Environment
	Environment variables

	The sys module

	The os module

	The platform module

Introduction

Requirements

Crossenv requires Python 3.5 or higher (host and build). Significant work has
gone into cross-compiling Python in newer versions, and many of the techniques
needed to do the cross compilation properly are not available on older
releases.

Crossenv currently only supports Linux build machines. Other operating
systems may work, but they are untested and unsupported.

Vocabulary

There is no standard vocabulary for the pieces that go into cross-compiling,
and different resources will often use contradictory terms. To prevent
confusion we use the GNU terminology exclusively, which is used by Python
itself.

	Host

	The machine you are building for. (Android, iOS, other
embedded systems.)

	Build

	The machine you are building on. (Probably your
desktop.)

	Host-python

	The compiled Python binary and libraries that run on Host

	Build-python

	The compiled Python binary and libraries that run on
Build.

	Cross-python

	Build-python, configured specially to build packages that
can be run with Host-python. This tool creates
Cross-python.

How it works

Python makes a note of the compiler and compiler flags used when it was built.
(This information can be viewed by running python3 -m sysconfig.) When
distutils or setuptools attempts to create an extension module, they
compile the extension using these recorded values along with reported
information about the currently running system.

Cross-python creates a virtual environment that, when activated, tricks
Build-Python into reporting all system information exactly as Host-python
would. When done correctly, a side effect of this is that distutils and
setuptools will cross-compile when building packages. All of the normal
packaging machinery still works correctly, so dependencies, ABI tags, and so
forth all work as expected.

Installation

Crossenv can be installed using pip (using build-python):

$ pip install crossenv

“Quick” Start

Cross compiling can be challenging, and crossenv is focused only on one
particular piece. As such, this section is not a complete guide.

Build build-python

Don’t trust a build-python that you didn’t build yourself. The version of
python that comes with a Linux distribution is usually patched by the
maintainers in ways that are subtly incompatible with the stock Python source.
Normally this isn’t an issue, but when using crossenv, build-python will end up
running some of host-python’s (unpatched) code. The end result is one of many
obscure errors.

Build-python and host-python must be the exact same version. As above, one
may need to execute the other’s bytecode, which only works if they have the
same version.

For general build instructions refer to the Python Developer’s Guide [https://devguide.python.org/setup/]. You
don’t need a debug build, so configure --prefix=/path/to/build-python is
usually enough.

At a minimum, you need zlib and openssl to build. Since build-python only
exists to build packages, you can often get away with leaving most optional
components disabled. It’s usually sufficient to build just enough to get pip
working, which requires the ssl and zlib modules. (More complicated
builds may require more. It depends very much on your specific requirements.)

Build or obtain host-python

In this quick start we assume you are building host-python yourself. In other
cases you may be targeting a pre-built system image. A pre-built image has it’s
own challenges, which are covered elsewhere.

You will need to build any host dependencies beforehand. So, for example, if
you want host-python to be able to communicate over a network, you may need to
cross-compile OpenSSL. Building these dependencies is beyond the scope of this
project.

Building host-python requires a working build-python. We recommend putting
build-python in your $PATH for the configure script to find. Here is
an example of a configure command used for testing crossenv against an ARM
host:

$ PATH=/path/to/build-python/bin:$PATH \
 ./configure --prefix=/path/to/host-python \
 --host=arm-linux-musleabihf \
 --build=x86_64-linux-gnu \
 --without-ensurepip \
 ac_cv_buggy_getaddrinfo=no \
 ac_cv_file__dev_ptmx=yes \
 ac_cv_file__dev_ptc=no
$ make
$ make install

The –host option specifies the host triplet, such as aarch64-linux-gnu.
Python will expect a compiler in you $PATH named
aarch64-linux-gnu-gcc, but this can be overridden by passing
CC=/path/to/cc on the command line. You can use CFLAGS and LDFLAGS
to point Python to any dependencies it needs.

The ac_cv_* arguments are to set information about the system that
configure isn’t able to determine when cross compiling. The first,
ac_cv_buggy_getaddrinfo=no allows IPv6, and the other two are for the
benefit of os.openpty [https://docs.python.org/3/library/os.html#os.openpty]. You may not need any of this functionality, but you
still need to supply the parameters.

Make the cross environment

First install crossenv:

$ /path/to/build-python/bin/pip3 install crossenv

Build the cross-virtual environment:

$ /path/to/build-python/bin/python3 -m crossenv \
 /path/to/host-python/bin/python3 \
 cross_venv

Activate the cross-virtual environment:

$. ./cross_venv/bin/activate

Build something:

(cross) $ pip install numpy
(cross) $ python setup.py install

Packages that you need at build time are best installed in build-python
explicitly:

(cross) $ build-pip install cffi
(cross) $ pip install bcrypt

(cross) $ build-pip install wheel
(cross) $ python setup.py bdist_wheel

Use the resulting packages

It’s up to you to incorporate your cross-compiled module into your project. It
might be easiest to create a wheel, and then unzip it at the right location. If
you did a pip install you can find the installed libraries at
cross_venv/cross/lib/pythonVERSION/site-packages.

Cross-Compiling Environment

This section documents the changes to the Python environment beyond just making
cross-python behave like host-python.

Environment variables

Crossenv sets PYTHON_CROSSENV to a non-empty value.

The sys module

	
sys.cross_compiling

	Set to True in cross-python. May be used like so:

if getattr(sys, 'cross_compiling', False):
 ...

	
sys.build_path

	Analagous to sys.path, but applies when importing packages from
build-python. This path is searched just before the entries on
sys.path that point to the Python standard library. This means
that sys.build_path is preferred when loading modules from the
standard library, but prepending to sys.path still works as
expected.

The os module

	
os.uname()

	In addition to returning host-python’s information, it always reports
the node as “build”.

The platform module

	
platform.uname()

	In addition to returning host-python’s information, it always reports
the node as “build”.

Index

 Symbols
 | E
 | O
 | P
 | S

Symbols

 	
 	$PATH, [1]

E

 	
 	
 environment variable

 	$PATH, [1]

O

 	
 	os.uname() (built-in function)

P

 	
 	platform.uname() (built-in function)

S

 	
 	sys.build_path (built-in variable)

 	
 	sys.cross_compiling (built-in variable)

 nav.xhtml

 Table of Contents

 		
 Crossenv: A Virtual Environments for Cross-Compiling Python Extension Modules

 		
 Introduction

 		
 Requirements

 		
 Vocabulary

 		
 How it works

 		
 Installation

 		
 “Quick” Start

 		
 Build build-python

 		
 Build or obtain host-python

 		
 Make the cross environment

 		
 Use the resulting packages

 		
 Cross-Compiling Environment

 		
 Environment variables

 		
 The sys module

 		
 The os module

 		
 The platform module

_static/file.png

_static/minus.png

_static/plus.png

